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The center of activity (Hayne, 1949), the arithmetic mean of Cartesian

coordinate vectors, has been widely used as the single best statistical

estimator of an individual animal's location over a given time interval.

Although several authors have questioned the biological relevance of the

center of activity (Hayne, 1949; Harrison, 1958; Smith et al., 1973;

Stickel, 1954; Tanaka, 1963), most workers have found it useful in itself

(Barbehenn, 1974; Cooper, 1978; Doebel and McGinnis, 1974; Gipson
and Sealander, 1972; Koeppl et al., 1979; Post, 1974) and as a basis for

many statistical home range models (Calhoun and Casby, 1958; Currie and

Bellis, 1969; Dice and Clark, 1953; Harrison, 1958; Jennrich and Turner,

1969; Koeppl et al., 1975, 1977; Mazurkiewicz, 1969, 1971; White,

1964).

In recent years statisticians have criticized the arithmetic mean for its

sensitivity to outliers (Andrews et al., 1972; Huber, 1972). One of the

virtues of the arithmetic mean is that it incorporates all observations,

equally weighted, but this also is one of its weaknesses because a large

error in any measurement is reflected in the sample mean; for this reason

the arithmetic mean lacks robustness. Consequently, statisticians have

proposed a number of robust location estimators. An excellent compara-
tive study of 68 of these robust location estimators was performed by
Andrews et al. (1972).

Because the concept of robust estimates of location may be new to

vertebrate biologists, we introduce here a simple, hypothetical example of
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a robust estimate of location applied to a frequency distribution contami-

nated with outliers (Fig. 1). It is clear that there is a central distribution in

the interval 1-9 containing 95% of the observations. Two of the observa-

tions (at 16 and 19) appear to be remote from the central distribution and

are potential outliers. The mean of all observations is 5.575. When we

apply a simple robust estimate of location to this sample by symmetrically

trimming 5% (2'/:% from each tail of the distribution) and computing the

mean on the remaining observations, we achieve the value 5.461. If we
increase the percentage of trim to 10 and then 20%, we see that the

estimates of location which result (5.342 and 5.139, respectively) more

closely approximate the mean of the central distribution (4.947). It is

interesting that trimming, when performed on observations which are part

of the central distribution, but ostensibly not outliers, produces only a

relatively small deviation in the estimate of location. Thus, light symmetri-
cal trimming prior to the computation of the mean seems to provide an

intuitively better estimate of location than the traditional mean on the full

data set. Hence this procedure qualifies as a robust estimate of location.

Another intuitive way of appreciating robust estimates of location is

through the sensitivity curves discussed by Andrews et al. (1972). Suppose
we had a sample of 19 normally distributed observations to which a 20th

observation is added. If the 20th observation coincides with the mean of

the 19 observations the mean on the full 20 observations is unaffected.

However, if the 20th observation deviates from the mean of the 19

observations, the mean of the 20 observations also deviates '/20th of the

magnitude of the deviation of the 20th observation. By varying the value of

the 20th observation, while keeping the other 19 constant, and computing
the estimate of location each time, we can summarize our results in a plot

of the estimate of location as a function of the variable observation (Fig.

2). Wecall this kind of plot a sensitivity curve. The sensitivity curve of the

mean is represented as a straight diagonal line because the estimate of
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Fig. I. A simple, hypothetical distribution contaminated by outlier (Arrows).
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Wewill, however, apply several robust estimators which Andrews et al.

(1972) thought promising to two-dimensional radio-tracking data of an

urban striped skunk (Mephitis mephitis), primarily to illustrate their

properties and use, but also as an example of a practical problem

frequently arising in studies of animal movement.

Materials and Methods

Radio-tracking

A striped skunk captured in Lawrence, Kansas, on 6 September 1977

was fitted with a 23-gram, pulsing transmitter having a mercury controlled

activity switch and whip antenna (obtained from Wildlife Materials Inc.,

Carbondale, Illinois), and released. Transmitter broadcasting radius was

2. 1 miles and battery life 250 ± 50 days. A portable 12-channel continuous

frequency receiver (from the same company), with a range of 150.9 to

151.0 MHz was used to monitor the signals. Each time the skunk was

located, the peak and two nulls were recorded as compass azimuths as well

as time of day, location of observer, and temperature. Gain settings and

signal intensity measured with a VU meter allowed estimation of receiver-

transmitter distance. From these data, location coordinates of the skunk

were obtained.

Three observers alternated tracking sessions. Two sessions, four hours

in length, were held every third night from 7 September to 15 November

1977, totaling 48 sessions. Each session ordinarily commenced at 1900

hours and ended at 0300 hours CST. Rain during a scheduled tracking

night postponed the session until the next clement evening.

Computational Procedures

Computer algorithms for calculating the various estimates of location

in this study were taken from Andrews et al. (1972) and adapted for

FORTRANY; these and original algorithms for calculating the sensitivity

curves and surfaces were run on the Honeywell 66/60 computer at the

University of Kansas. To check location estimator algorithms we re-

produced the sensitivity curves in Andrews et al. (1972). Besides the

traditional mean (M), five additional estimates have been chosen, based on

their performance over a range of sample sizes and distributions. Below,

we briefly describe the methods employed, but for the exact methods,

refer to the algorithms supplied in Andrews et al. (1972).

Simple Trimmed Means (M and 10%)

If the proportion (a) of observations trimmed from each end of an

ordered array is a multiple of 1/n (n = sample size), then an integral

number of points should be deleted from each end of the sorted vector(v).

Otherwise, a weighted mean,

L*={Pv +v +...Pv }/{n(l-2a)}v

([an+1]) ([an + 2]) (n-[an])'
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is used, where P= 1 +[an]-an, the subscript of v denotes a specific

element, L* is the estimate of location which results, and [] denotes the

integral portion of quantity enclosed (see Andrews et al., 1972:7). An a
value of 0.0 yields M; when a = 0.05 the location estimate is a 10% trim.

Restricted Adaptive Trimmed Mean (JBT)

The value for a is chosen to minimize the asymptotic variance A:

A = 1

(a) 2
(l-2c*)

2

n —an

{
E (v.-L*) 2 + a(v -L*)

2 + a(v -L*)
2

}

j
= an+l 0)

a (om+l) or
1

(n-an) a' >

in which a =
([n/12/]/n) and ([n/4]/n); the trimmed mean having the

smaller of these two variances represents the robust estimate of location

(see Andrews et al., 1972:9).

M-Estimates (Sine Function, AMT; Independent Scale Piecewise, 17A)

Both M- estimates tested involved the solution to the equation
v —T

*
£* (

v
-)

=
.

s
l

For AMT, ¥(v) = sin (v/2.1) where |v|<2.1tt. Otherwise, ¥(v) = 0.0.

The estimate of scale, s,, used is the median of the absolute deviation

about the estimate of location, L*; this estimate is revised every third

iteration (see Andrews et al., 1972:15).

For estimate 17A, the equation above was solved for ^(v) =
sign of v

times y, where

|v| o^|v|<1.7
1.7 1.7^|v|<3.4

3.4<|v|<8.5
8.5- |v

3

o |v|^8.5

where
s, is the median of absolute deviations from the median, (see

Andrews et al., 1972:14).

Multiply— skipped mean. Max (5k, 2 deleted) (5T1)

Hinge estimates h, and h
2 (Andrews, et al., 1972:18) are first

computed on v where
v n

([ 1), n not a multiple of 4
4

hj
= or

( vn + vn )/2, n a multiple of 4

4 4
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v n + 3
(n + 1

-
[

a ]) , n not a multiple of 4

h
2

= or

(v n +v n )/2, n a multiple of 4.

(n+1-5) n-V
4 4

Then, t,
and t 2 , scale estimates furthest from the center of the data are

computed as:

t
1
=h

1
-1.5 (h

2 -hj)

and t9=h2+ 1.5 (ho
—

hi)

An initial skipping procedure deletes or skips observations lying

outside the scale estimates
(t,

and t
2 ). If k ^ 1 observations are deleted by

the above procedures a further max (2k, 1) are deleted from the end of the

array and the mean is computed for the observations remaining (Andrews

etal., 1972:18-20).

Sensitivity Surfaces

To study the behavior of bivariate outliers on bivariate sample
distributions using the six estimates of location described above, we

plotted sensitivity surfaces, the three-dimensional extension of the sen-

sitivity curves (Andrews et al., 1972). The method was as follows: the x

and y sample coordinate vectors for 19 points were scaled to the interval

- 1.0 to + 1.0 so that the sample estimate of location was at the origin

(0.0, 0.0), and the relative position in space of the sample coordinates was

thus preserved. A known outlier value was added to these scaled and

centered sample data. The x- and y- coordinate values of the outlier were

then systematically and independently varied from -5.0 to +5.0 at

intervals of 0.100000 and 0.166667 for the x- and y-axes, respectively.

Deviations (distances) between the sample activity center and the location

estimate for samples with known outliers were represented by the height

(z-coordinate) for any x- and y-outlier combination. The height above the

surface has been shown by 51 different symbols in increasing intervals of

0.01 . Every second interval is represented by a different symbol so that the

final figure resembles a contour map and can be similarly interpreted. In

all, each sensitivity surface is represented by 5150 discrete printed

symbols; sensitivity surface facsimiles in the present paper (Fig. 3) have

been drawn from these computer generated contour maps. A similar

procedure was followed using the 10 unique locations for the radio-

collared skunk, contaminated with a single outlier (Fig. 4). Note that

frequency of occurrence at each location was disregarded.

Relative Importance Index

To determine the effect of each sample observation on the location

estimators we computed a relative importance index. This entailed

computing the Euclidean distance between the activity center of the entire
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sample (n) and the activity center with an observation deleted (n-1),

standardized by the distance between the activity center and the location

coordinates of the deleted observation. We then multiplied by (n-1) to

account for the fact that observations from small samples would be

expected to have more influence than those from larger samples. In
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Fig. 3. Sensitivity surfaces for six algorithms of the center of activity on idealized

bivariate normal data to which a variable outlier was adjoined: A. arithmetic mean(M): B, 10

percent trim ( 10% ): C. restricted adaptive trimmed mean(JBT); D, M-estimate, sine function

weighted (AMT): E, M-estimate. independent scale piecewise weights(17A); F. multiply

skipped mean, max 5K. 2 deleted(5Tl). Each sensitivity surface can be interpreted like a

topographic map. but with the different shading representing different surface levels. For A,
levels are shown as alternating black and white bands with the lowest values at the center,

radiating outword. The remaining surfaces (B-F) in increasing magnitude, are shown by
dashed lines, black, white, and gray.
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mathematical terms, the relative importance index for the i-th observation

(ojj) may be represented as:

[(L* -L* r + (L*-L*
x

n
x

(n-l) y n y(n-l)
)

2
]'

/2
(n-l)

OJ:

[(L*-L X )

2 + (L*-L )

2
]'

/2

v n i y n yr
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Fig. 4. Sensitivity surfaces computed for six algorithms of the center of activity on the 10

unique coordinates of the skunk data to which a variable outlier was adjoined. See legend of

Figure 3 for further details.
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When L* is the estimate of location calculated for all n, x coordinates;x
n

I* is the estimate of location calculated for all n, y coordinates;
^n

LJ is the estimate of location of n- 1, x coordinates;x
(n-l)

L* is the estimate of location of n -
1 , y coordinates;

y (n-l)

L v is the x i-th coordinate of the abscissa;x
i

L is the y i-th coordinate of the ordinate.

The importance index may vary from to oo; by definition 0^
= 00 when

the divisor of the above equation is zero. A
co,

value near zero denotes a

coordinate whose deletion does not influence the location estimator.

Values of co;= 1.0 result from the arthmetic mean.

Several robust estimates of location use weighting factors which are

similar in concept to our relative importance index. However, the

importance index can be calculated for any proposed estimate, not just

those employing weighting factors, thereby facilitating comparison.

Results

Sensitivity Surfaces

The bivariate sensitivity surface (Fig. 3 A) clearly shows that the

activity center or bivariate mean is unbounded when an idealized sym-
metrical distribution is contaminated by outliers of increasing magnitude.
This is indicated by the regular pattern of the concentric contours, which

in theory form an inverted cone with its vertex at the plot center.

The remaining sensitivity surfaces for the robust estimates (Fig. 3B-F)

show different patterns; all achieve plateaus at the margins of the plots and

we can assume that they remain at the same or lower level if extended

infinitely. Another notable difference between the surface representing the

bivariate mean and those representing robust estimators is the existence in

the latter of valleys radiating from the center of the surface, oriented

parallel to the fixed axes of the surfaces. The valleys are due to

independent consideration of the x and y coordinates, in which outliers are

recognized by extreme x or y coordinates but not by intermediate values of

both. A better technique for identifying outliers would be to rank

observations according to distance from the center of activity, perhaps

using a standard distance such as a Mahalanobis distance which would

adjust for elongated home ranges.

When the 10 skunk locations are used, the location and shape of the

cone representing the traditional activity center are the same (Fig. 4A). It

is interesting that although the sample data are not symmetrical, the
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sensitivity surface is. This is another indication that the traditional activity

center is invariant to rotation of the data. Symmetry, and by inference,

invariance to rotation, is not exhibited by the sensitivity surfaces for the

robust estimates of location (Fig. 4B-F). However, their robustness is still

apparent from the plateau features which extend to the figures' margins.

Analysis of the Full Data Set

Seventy-nine location fixes were obtained for the skunk (Fig. 5). Of
these, 90% occurred at two den sites. One den site was under a rear porch

(Fig. 5, location 3), and the other was under a small shed (Fig. 5, location

4). Remaining points represent the location of capture (Fig. 5, location 1),

an isolated observation (Fig. 5, location 2), and a single night's foray (Fig.

5, broken line, locations 5-10). Although the actual location fixes varied

about the den sites, we attributed the variation to observational error,

amounting to approximately ±0.25 grid units.

Estimates of location were computed for all 79 observations and the

relative importance indicies for each point were determined (Table 1). The

indices reveal that locations 1 and 2 (Fig. 5) are less important than the

others, which make up a cluster of points around the den sites. Each of the

robust estimates of location is nearer the principal distribution of data

points than is the traditional activity center.

When the same statistics are computed on 10 unique skunk locations

which are less heavily centralized (Table 1), the effect on the relative

weights and estimates of location were similar but less pronounced.

390
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Discussion

Computation of an activity center is often useful in summarizing the

locational data of an individual as a single point. The method of Hayne
(1949) based on independent arithmetic means has been the traditional

method for accomplishing this task but it lacks robustness because it is

unduly sensitive to outliers or bad data. In the past, researchers have dealt

with this problem by (1) subjectively discarding the apparent outliers, or

(2) using special knowledge of the data as a guide in deciding which

observations were valid and which were spurious. In our example, the

capture point was likely to be an outlier because skunks frequently shift

their home ranges after capture and release (Verts, 1967; Verts and Storm,

1966). (3) Some researchers partition their data set into several arbitrary

subsets for separate analysis. Unfortunately, this only relegates the outlier

to a smaller subset; the problem remains. (4) Purists argue that to practice

any of the above options introduces arbitrary biases, so the activity center

should be computed on all the data, in the hope of obtaining cancelling

error. (5) All of the above are rather ad hoc treatments of outliers in spatial

data. More systematic operational procedures are widely available

(Gnanadesikan and Kettenring, 1972; Grubbs, 1969; Brown, 1975;

Gentleman and Wilk, 1975; Rohlf, 1975). The researcher should make a

careful concerted effort to identify outliers and distributional peculiarities

in the data set prior to analysis. Beyond the obvious benefits of identifying

outliers, the researcher also gains familiarity with the data. Outliers in

themselves are not "bad," but are often records of interesting but

transitory phenomena. By definition they tend to obscure the measurement

of central tendency or main effects. The researcher can devise techniques

to identify and propagate outliers for closer study, or can eschew them

when determining measures of spatial central tendency.

Robust estimates of location offer a reasonably good estimate of the

center of activity regardless of the presence of real or suspected outliers.

In exchange, some of the sensitivity of the location estimate is necessarily

lost.

Robust estimates of location can enhance spatial analysis in a number

of ways. First, it is difficult to identify all outliers in the large amount of

data which can be collected methods such as radio telemetry. Second,

spatial data of wildlife often fail to follow identifiable statistical distribu-

tions; robust estimates of location are less dependent on distributional

assumptions of the arithmetic mean. Third, wildlife make forays which

often produce outliers. And fourth, wildlife frequently shift their home

ranges, while researchers are unable to determine when and where the

shift actually occurred (Cooper, 1978).

All of the results discussed thus far indicate that the robust estimates of

location differ less among themselves than they do from the arithmetic

mean. Hence, the choice of a robust estimate to use, if it is necessary, is

almost arbitrary. We favor using a simple trim method because it is

intuitive, effective, and easy to compute.
In conclusion, robust estimates of the activity center provide reliable
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estimates of location even with outliers in the data, but reduce sensitivity.

If outliers in spatial data are suspected, robust estimates of the center of

activity are a prudent alternative to traditional analysis, because of their

high sensitivity to outliers. Using the mean to compute the center of

activity may be the worst of the available alternatives.
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Summary

The center of activity is useful as an estimate of an individual's location in

space and as a basis for many statistical home range models, but it is

sensitive to outliers (locational data remote from the principal distribu-

tion). We tested some newly developed "robust" estimates of location,

which are less sensitive to outliers as alternatives. Wehave illustrated their

properties by means of sensitivity surfaces and relative importance

indices, and applied these robust estimates to locational data obtained by

radio-tracking an urban striped skunk (Mephitis mephitis).
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